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Abstract 
First order plus dead time (FOPDT) models are used to represent the behaviour of many 

processes in the physical world. This is because the response of such models to step or pulse 

inputs can offer a good approximation to the actual response of many systems and sub-

systems found in industrial process control. In such cases the system identification problem is 

simplified to that of parameter estimation. However, although the theoretical development of 

many system identification algorithms is available in the literature, researchers rarely release 

developed code for third-party use. This paper describes a modern FOPDT system 

identification algorithm based upon an integral equation (IE) method and demonstrates how it 

can be implemented within any appropriate programming environment. It also describes how 

existing curve fitting software developed for the numerical computing environment 

MATLAB can be used to estimate the FOPDT parameters and step-by-step tutorials for using 

three different methods are presented. The different techniques are compared subjectively 

and tested using simulated data. Finally they are used to identify a laboratory process using 

experimentally obtained data. 
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1. Introduction 

 

For the design of many control algorithms, a process model is required. When the control 

algorithm is of the proportional plus integral (PI) or the proportional plus integral plus 

derivative (PID) form, the process model is often assumed to have a first order plus dead time 

(FOPDT) structure. This is because a FOPDT response is a good approximation to the actual 

response of many systems and sub-systems found in industrial process control applications. 

In addition, tuning of the PID controller parameters can be initiated using formulae that 

specify their values in terms of the FOPDT parameters. Popular tuning methods include those 

attributed to Ziegler-Nichols [1], Cohen-Coon [2] and Kappa-Tau [3]. This paper 

concentrates on the estimation of FOPDT model parameters using step and pulse response 

data. 

mailto:kevin.burn@sunderland.ac.uk


2 of 22 
 

 Early approaches to system identification relied on graphical techniques and the methods 

of Ziegler and Nichols [1], Oldenbourg and Satorious [4], Sten [5] and Rake [6] epitomize 

these methods. For monotonic step responses, the collection of approaches that are based on 

specific area calculations are well represented in the paper of Nishikawa et al. [7] and the 

book by Astrom and Hagglund [8].  

More recently, a family of new methods has been published that is more computationally 

involved but allows the parameters of the transfer function model, including the time delay, 

to be estimated simultaneously. They are commonly referred to as integral equation (IE) 

methods. The original ideas of Bi et al. [9] and Wang and Zhang [10] have been extended to 

allow identification under transient initial conditions [11]. Other developments have also 

been reported. For example, in references [12] and [13], new methods to handle ‘piecewise 

step tests’ have been presented. 

In all of the above cases special purpose software has been developed that is generally not 

freely available. However, an alternative approach, using more readily available, general 

purpose, proprietary curve fitting software, has the potential to provide a simpler solution to 

the determination of FOPDT model parameters for those who do not have access to the kind 

of specialist software described in the research literature.  

For a number of years there has been an interest in the relationship between system 

identification and curve fitting [14]. The aim of this paper is to illustrate how system 

identification can be performed as a curve fitting exercise. After consideration of a recent IE 

system identification method [11], three curve fitting software solutions available for the 

MATLAB software environment are employed to estimate the parameters of a FOPDT model 

using data generated under simulation. Detailed instructions on how to employ the various 

methods are given and an assessment of their accuracy and ease-of-use is made. The IE 

method and the best of the curve fitting methods are then employed on experimental data 

acquired in the laboratory and a further comparison made. 

The paper is structured as follows. In Section 2 the theory behind the IE method is 

presented, for both step and pulse input data. Detailed pseudocode showing how to 

implement the method for a step input using any suitable software platform is also shown. 

Section 3 introduces three curve fitting techniques available in MATLAB, which are 

presented in a tutorial style to help readers repeat the tests with appropriate data. It concludes 

with a brief evaluation of the advantages and disadvantages of the different methods. In 

Section 4, the IE method and one of the curve fitting methods are used to fit a FOPDT model 

to (i) a simulated higher order system, and (ii) experimental data obtained from a laboratory 

water level control system. Conclusions and recommendations for further work are discussed 

in Section 5. 

 

 

2. FOPDT parameter estimation using the integral equation (IE) method 

 

2.1 Using step response data 

 

The model of the system under consideration is assumed to be represented by the transfer 

function:  
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In equation (1), K is the process gain, T is the time constant, and D is the dead time, or 

time delay, as it will be referred to henceforth. Now consider the process response y(t) to a 
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step input u(t) from 0 to h, at some time t > 0. If the system is initially at rest the response 

will be of the form shown in Fig. 1. 

 

 
Fig. 1. Step response of a first order plus dead-time (FOPDT) model 

 

Assuming the initial conditions to be zero, the basic equation can be re-written in a form 

more amenable to the analysis under discussion. 

 

 ( ) ( ) ( ) ( ) ( )sEsDsKUsYsTsY +−=+ exp                   (2) 

 

In equation (2), E(s) represents any error present due to noise, nonlinearity, or that arising 

from any other inaccuracies in the model.  

Equation (2) has three unknowns: T, K and D. A paper by Ahmed et al. [11] states that an 

equation allowing simultaneous estimation of the unknowns can be obtained firstly 

integrating equation (2). The result of this single integration is shown in equation (3):  
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Taking inverse Laplace transforms of equation (3) yields: 

 

  ( ) ( )  ( ) ( )teDtKutTyty I+−+−= 11        (4) 

 

where the first order integrals of y(t) and u(t) are defined as follows: 

 

  ( ) ( )=
t

dyty
0

1  ,  ( ) ( )=
t
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0
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Equation (4) is valid for any bounded input signal u(t). Notice that D remains an implicit 

parameter that cannot be directly estimated. When the input is a step function, the problem is 

overcome as follows. 

 

It has been shown in [11] that if the input is a step function of height ℎ applied at 𝑡 = 0, the 

following integral holds for t ≥ D: 
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For a step input the estimation equation (4) can be written for t ≥ D: 

 

  ( ) ( ) ( ) ( )teDtKhtTyty I+−+−=1         (7) 

 

This can be expanded and re-arranged to give: 

 

  ( ) ( ) ( )teKhDKhttTyty I+−+−=1         (8) 

 

Equation (8) can be expressed in least-squares estimation form as follows: 
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Using a more general terminology, equation (9) can be written in the form 

 

 ( ) ( )tet +=                    (10) 
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 , and e(t) is noise. 

 

Using all of the sampled values of  ( )ty 1 , y(t) and t, equation (10) can be written as follows: 

 

  +=                    (11) 

 

where 
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In equation (12), N is the total number of samples and d is the delay expressed in number of 

sampling intervals, so that tdD = , where t is the sample time. 

 

The least squares estimation ̂  of   in equation (12) is given by: 

 

 ( ) =
− TT 

1ˆ                  (13) 

 

This enables K, T and D to be calculated from the three rows of ̂  i.e.  1̂=T ,   hK /2̂=  

and   ( )KhD /1̂−= . 
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For a noise-free FOPDT process modelled by a FOPDT transfer function, perfect values 

(i.e. 0% error) are obtained for the parameters, provided DD ˆ . With data obtained from real 

systems, however, noise usually has a detrimental effect, resulting in biased values for the 

estimated parameter values. One method of minimizing the effects of noise is to use the 

instrumental variable least-squares method [9, 15-17]. This is briefly summarised as follows. 

Even though the measurement noise is assumed white, the integration operation performed on 

y(t) results in a coloured error term, which culminates in the parameter values being biased. 

To counteract this, the IV method uses a surrogate system with ‘guessed’ parameters, with 

the same input as the real system, but which is not influenced by noise. How this is achieved 

in practice is shown in the following section. 

 

 

2.2 Algorithm implementation 

 

Details of the algorithm to implement the IE method in software are presented below in 

the form of pseudocode. This is shown in Algorithm 1, where the following points should be 

noted: 

 

• The pseudocode is intended to be language independent, so that it can be implemented 

with any appropriate programming language/platform. For this work, the authors used 

a MATLAB m-file. 

• All quantities in bold are either vectors or matrices. 

• The algorithm requires time, input, and output data from a step test as vector 

parameters (t, u and y, respectively). 

• The sampling time Ts is known and constant, and there are N samples in each of the t, 

y and y vectors, e.g. u = u[1], u[2], u[3], ..., u[N] etc. 

• The estimate for the time delay used in the iteration process is actually relative to time 

t=0. Hence the actual time delay is D – (step time). This is given the symbol L in 

Algorithm 1. 

• The variable for the previous loop estimate of D, expressed as an integer multiple of 

Ts (D_guess_z), is initially set high in order to ensure the algorithm enters the 

iteration loop during the first pass (line 6). 

 

 

Algorithm 1. INTEGRAL EQUATION METHOD(t, u, y) 

 

1 h = u[N] – u[1] // Step size 

2 Ts = t[2] – t[1] // Sample time 

3 Tstep = max(u[i+1] – u[i]), i = 1,N // Time at which step input occurs 

4 y1 = integral(y) // Numerical integration  

5 D_guess = Ts // Initial guess for (L + Tstep) used in 

// iteration loop 

6 D_guess_z = 999 // Previous estimate for D_guess 

7 D_count = ceiling(D_guess / Ts) // D_guess expressed in terms of number  

// of samples 

8 count = 1 // Loop counter 

9 while sTzDguessDguess − _  //Convergence condition 

10 tm    = t[(dd+1)...Nt] // Redefine t, y, y1 data so that it starts 

11 ym   = y[(dd+1)...Nt] // at sample (dd+1) 
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12 y1m = y1[(dd+1)...Nt]  

13 phi = [-ym tm 1] // Least squares estimation 

14 if count == 1 // First loop only... 

15 psi = phi  

16 else  

17 ( ) Nddyym 1ˆˆ +=  // Estimate, calculated below 

18 psi = [ mŷ tm 1]  

19 end if  

20  = (psi’*phi)-1 * psi’ * y1m // Equation (11) 

21 T = [1] // Calculate T, K and L 

22 K = [2] / h  

23 D = -[3] / (K * h)  

24 L = D – tstep  

25 if L < 0 L = Ts // Prevents negative L causing instability 

26 Gm = Ke-sL /(Ts + 1) // Surrogate system 

27 ŷ =L-1[Gm(s).U(s)] // Inverse Laplace transform to get y 

// estimate 

28 Dguess_z = Dguess;  // Update previous estimate 

29 Dguess = round(D*100)/100; // Accurate to within one sample period 

30 dd=ceil(Dguess/Ts);     // Number of samples of Dguess 

31 count = count + 1; // Update loop counter 

32 end // Of while loop 

 

 

The MATLAB m-file implementation of Algorithm 1 can be obtained from the authors if a 

request is made by email. 

 
 

2.3 Using pulse response data 

 

Although a step function is accepted by many as an appropriate input for system 

identification, there are situations where an input with a less disruptive response is desirable. 

Such inputs include a simple pulse, characterised here as having an amplitude h 

and width W. For analysis purposes a ‘pulse’ can be considered as a summation of delayed 

steps and can be expressed as:  

 

 ( ) ( ) ( )
=

−−=
1

0i
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where 
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In the case of the simple pulse, W = L1 – L0; h1 = -h0. 
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For the input defined by equation (14), the delayed signal can be expressed as: 

 

 ( ) ( ) ( )
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−−−−=−
k

i

iii DLtDLthDtu
0

                (16) 

 

If ( )DLt ii −−=                    (17) 

 

Then (16) can be simplified to: 
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It follows from (4) and (18) that: 
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Expanding (19): 
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Finally, expressing the result of equation (20) into the form of equation (10) leads to: 
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It is a relatively straightforward task to modify Algorithm 1 for a pulse input. 

 

 

3. Curve fitting using MATLAB 

 

3.1 Introduction 

 

Norton [18] describes identification as the process of constructing a mathematical model 

of a dynamical system from observations and prior knowledge. In a report produced by the 

Open Sustainability Technology Lab of Michigan Tech, curve fitting is described as the 

determination of a mathematical model that best fits experimental data [19]. In addition, their 

best fit is quantitatively defined as the minimisation of the difference between the data and 

the curve. Finally, in Ljung [14] formalised the ‘kinship’ between the identification of linear 

dynamical systems and classical curve fitting.  

The ‘best fit’ problem for experimental data frequently involves a least squares solution. 

Often these problems are linear, but in the case of a FOPDT response it is nonlinear because 

the curve to be used in the fitting process is not linear in the parameters. In such cases it is 

necessary to resort to nonlinear least squares methods that involve an iterative improvement 

to the parameter values. In principle this is similar to the iterative loop employed in the IE 
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method described in section 2. An excellent article by Gavin [20] provides a detailed analytic 

treatise of one of the more popular strategies, known as Levenberg-Marquardt algorithm 

(LMA). However, the approach here is not to describe the mathematical basis of these 

various methods, but to explain how the various software solutions that are based on these 

algorithms can be exploited.  

In Ljung’s paper [14], the response of a linear dynamical system in continuous time is 

described by: 

 

 ( ) ( ) ( ) ( )tvtupGty +=                    (22) 

 

where p is the differentiation operator. In the general identification problem the aim is to find 

transfer operator G(p) and possibly the spectrum of the additive noise v(t). However, in this 

case the structure of the transfer function is known to have the form described by equation 

(1). Consequently, the following can also be shown. 

 

For a step function defined by: 
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The response is given by: 

 

 ( ) ( )( )   DtHTDtKhty −−−−= /exp1                 (24) 

 

where H[t - D] is the Heaviside step function. For a pulse of height h and width W: 
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 ( ) ( )( )    ( )( )   WDtHTWDtKhDtHTDtKhty −−−−−−−−−−−= /exp1/exp1  

                      (26) 

 

It is thus equations (24) and (26) that will represent the theoretical ‘curves’ that are to be 

fitted to the experimental data, with 𝐾, 𝑇 and 𝐷 the parameters to be identified.  

The following sections describe the use of three proprietary software applications, 

developed for use within a MATLAB environment: the Curve Fitting Toolbox, the 

Optimization Toolbox, and a free curve-fitting toolbox called EzyFit. The information is 

presented in an active and direct style, in order to facilitate its use as a tutorial for the new 

user. 

For each of the methods described it is assumed that step or pulse response data (as 

appropriate) is available in the MATLAB workspace, in the form of time and output vectors 

(usually assigned symbols t and y, respectively. The data used in the following sections was 

generated using a Simulink simulation, via To Workspace blocks with the Save format set to 

Array. 
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3.2 Curve Fitting Toolbox 

 

The Curve Fitting Toolbox can be used in two different environments: via a graphical user 

interface (GUI) (which is the one followed below), or via the MATLAB command line. This 

section provides an overview of those parts of the toolbox which are required to identify a 

FOPDT transfer function using noise-free data generated by a Simulink model. For those 

wishing to have a more complete understanding of all of the features available when using 

the toolbox, a good reference is that provided by the support documentation [21].  

To illustrate the basic methodology consider the problem of determining the parameters of 

a FOPDT model characterised by the transfer function: 

 

 ( )
( )

12

15.2exp25.1

+

−
=

s

s
sGp                   (27) 

 

To open the curve fitting tool, enter cftool at the prompt in the command window. This opens 

the Curve Fitting Tool window shown in Fig. 2. 

 

 
 

Fig. 2. The Curve Fitting Tool Window 

 

The next step is to click on the [Data...] button in shown in Fig. 2, which opens the Data 

window, similar to that shown in Fig. 3 but with the Preview pane initially empty. This 

window allows X Data and Y Data to be imported from the workspace (i.e. t and y data for 

this application). Once the data has been selected via the drop-down list, a preview of the 

data that will be used for the identification phase appears, as shown. To proceed to the next 

window, click on the [Create data set] button.  

The original window (Fig. 2) now includes the preview data. The next step is to click on 

the [Fitting...] button. This reveals the Fitting window, similar to that shown in Fig. 4, but 

with the Custom Equations and Results panels initially empty. Clicking on the [New fit] 

button allows the user to give the session a name (Fit name) and choose a Type of fit. Since 

the Exponential library does not contain the desired equation, the user must create their own 

using the Custom Equations alternative. This opens the New Custom Equation window 

shown in Fig. 5. 
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Fig. 3. The Data window 
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Fig. 4. The Fitting window 

Firstly, choose the General Equations tab, change the independent variable to t, then type in 

the required equation. In MATLAB syntax the FOPDT response is defined as follows: 

 

 ( )( )( ) ( )DtheavisideTDtKhy −−−−= *./exp1*     (28) 

 

In equation (28), heaviside(t-D) is (unsurprisingly) the Heaviside function. This is 

implemented in the MATLAB Symbolic Toolbox. However, if this toolbox is not installed, it 

is a relatively simple matter for anyone with even rudimentary skills in writing MATLAB m-

files to develop a user-written equivalent. 

Clicking on the [OK] button produces the response shown in Fig. 6. In addition, the 

Results pane in the Fitting window displays the values for Kh, T and D, together with some 

well- known characteristics that define the quality or goodness of fit (Fig. 4). In the case 

shown here the date was ideal and noise-free and the model chosen is the right one. Thus, the 

results were exact, as shown in Fig. 5, i.e. K = 1.25, D = 2.15, T = 2. In Fig. 5 the blue 

diamonds represent the experimental data and the red curve is derived using the values 

displayed for Kh, T and D. 

 

 
 

Fig. 5. New custom equation window 
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Fig. 6. The final window 

 

 

3.3 Optimization Toolbox 

 

For MATLAB users who do not have access to the Curve Fitting Toolbox but do have access 

to the Optimisation Toolbox [22], an alternative solution to the system identification problem 

is possible to exploit the lsqcurvefit algorithm.  

The lsqcurvefit function solves nonlinear least squares problems and is essentially a 

convenient interface for data-fitting problems. It uses the lsqnonlin algorithm, which is the 

same as that used by the Curve Fitting Toolbox. In the case of the FOPDT transfer function it 

enables the user find values for K, T and L comprising the vector a which solve the problem: 

 

 ( )  −
2

,min YDataXDataaF       (29) 

 

given an input data vector XData and an observed data vector YData, both of length N. In 

addition, F(a, XData) is a vector valued function that captures the step or pulse responses, as 

presented earlier. Note that in this case, the input pulse must begin at a time greater than zero 

i.e. t > 0, or the algorithm described below fails and an error message is generated. The 

normal m-file formulation makes use of the anonymous function concept. An anonymous 

function is one that is not stored in the program, but one that accepts an input and returns an 

output, just as standard functions do. In addition, it contains a single executable statement. As 

shown in the MATLAB m-file below, the @ operator creates the anonymous function. 

 

For a single pulse input, of height H and width W, the FOPDT curve fitting m-file has the 

following form (Algorithm 2): 

 

Algorithm 2. PULSE INPUT IDENTIFICATION USING OPTIMIZATION TOOLBOX 

 
function [a,resnorm]=optlsqFOPDTpulse(W,H,Working_Data); 
     t=Working_Data(:,1); 

y=Working_Data(:,2); 
f=@(a,t)a(1)*H*(1-exp(-(t-a(3))/a(2)))... 
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.*heaviside(t-a(3))-a(1)*H*(1-exp(-(t-a(3)-W)/a(2)))... 

.*heaviside(t-a(3)-W); 
     [a,resnorm] = lsqcurvefit(f,[0.5 0.5 0.5],t,y) 
     K=a(1); T=a(2); D=a(3); 

end 

 

For the transfer function given by equation (27), the results produced by Algorithm 2 for a 

sample time 𝑇𝑆 = 0.1 were K = 1.2497, D = 2.1603, T = 1.999., with resnorm = 5.0072e-

007. Perfect results were obtained using the IE method with a pulse response. 

 

 

3.4 EzyFit Toolbox 

 

The EzyFit Toolbox is a free add-on for MATLAB, which was intended to offer a simple 

and efficient way to perform curve fitting with a range of nonlinear fitting functions [23]. The 

web site provides a wide range of details about the software including system requirements, 

installation instructions and a demonstration example to illustrate the methodology and 

provide further information about the software. 

 After downloading and installing the toolbox, and adding the necessary input/output (t, y) 

data  in the workspace, the first step is to type at the MATLAB prompt: 

 
>> efmenu 

 

Assuming the MATLAB workspace includes (t, y) data, it should then be plotted using the 

standard MATLAB command:  

 
>> plot(t,y) 

 

This results in the appearance of a standard MATLAB plot of the response. However an 

additional option appears to the right hand side of the menu: EzyFit. Selecting this option 

produces a window similar to Fig. 7. Clicking on Show fit reveals a list of different kinds of 

functions. However none of the standard exponential functions are suitable for modelling a 

FOPDT response. Consequently, it is necessary to click on Edit User Fit. This produces a 

new list similar to that shown in Fig. 7. If the New User Fit... option is selected an Edit User 

Fit window opens that allows the user to customise the fit, as shown in Fig. 8. The new list 

shown in Fig. 8 (#1: myfit; #2: fit3 etc.) are all user-defined functions. In the following 

discussion the function designed here was named csc1. 
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Fig. 7. EzyFit menu 

 

 

 
Fig. 8. Edit User Fit window 

 

After returning to the original plot window, selecting Show Fit and csc1 reveals the results 

shown in Fig. 9. Note that T = 1/b = 2. Once again, almost perfect estimates for the FOPDT 

parameters have been obtained. 

 



15 of 22 
 

 
Fig. 9. EzyFit results 

 

 

3.5 Comparison of the different methods 

 

For the step response tests, essentially perfect (i.e. error-free) results were obtained using 

the IE method, the Curve Fitting Toolbox and the EzyFit Toolbox. For the pulse response 

tests, perfect results were obtained using the IE method, but small errors were recorded when 

using the Optimization Toolbox. However the greatest error, which was in the estimation of 

the time delay D, was less than 0.5%. 

Hence, when using idealised data, the performance of the various methods can hardly be 

separated in a quantifiable sense. This is not surprising given that three of the methods – IE, 

Curve Fitting Toolbox and EzyFit Toolbox – are all based upon a least squares approach. The 

main differences between the methods lay in their relative ease of use and required prior 

knowledge to apply them.  

Due to the relative complexity of using the Optimization Toolbox compared to both the 

Curve Fitting Toolbox and EzyFit, it was decided that it would not be used during further 

testing, as described in the next section. The principal advantages and disadvantages of the 

other approaches can be summarised as follows. 

 

Integral equation (IE) method 

Advantages: 

• It can be developed as a standalone application, not tied to any computing platform 

or programming language. 

• The underlying equations can be developed for higher order systems, systems with 

transfer function zeros, non-minimum phase systems, systems with transient initial 

conditions, and different inputs (step, pulse, ramp etc.) 

 

Disadvantages: 

• Implementation requires advanced programming skills. 

• Modification of the FOPDT equations requires an understanding of the underlying 

theory and mathematics. 
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Curve Fitting Toolbox 

Advantages: 

• It is easy to learn. 

• It can be run from a GUI-based user interface. 

• A wealth of supporting information is freely available online. 

 

Disadvantages: 

• The Toolbox must be purchased and the correct version used within a MATLAB 

environment. 

• The FOPDT structure is not a default, user-selectable option. 

 

EzyFit Toolbox 

Advantages: 

• It is free to download and install, and there is no time limit on its use. 

• It is easy to use. 

 

Disadvantages: 

• It must be used within a MATLAB environment. 

• The FOPDT structure is not a default, user-selectable option. 

 

 

4. More realistic examples of FOPDT modelling   

 

A large number of industrial processes with monotonic step responses can be modelled by 

a FOPDT transfer function of the form defined by equation (1) [24]. In addition, there is 

widespread use of the model in the design of PI and PID controllers. For example in the book 

by O’Dwyer [25], tuning rules for PI/PID controllers proposed over six decades are 

presented, many of which assume the availability of a FOPDT model.  

This section considers two different situations that deviate from the ideal FOPDT data 

considered until now. The first is where the transfer function of the system to be identified is 

of order greater than one. The second concerns a laboratory process with an unknown transfer 

function; however, even in its simplest mathematical representation, the characterising 

equations are nonlinear. In addition, the measured response is contaminated by noise. 

In both cases, the aim is to determine FOPDT models from step and pulse inputs, using the 

IE method, the Curve Fitting Toolbox, and the EzyFit Toolbox, as appropriate. 

 

 

4.1 Simulated higher order process 

 

The chosen model was third order and defined by the following transfer function: 

 

 ( )
( )

( )31

5.0exp2

+

−
=

s

s
sGp         (30) 

 

Step response. Data was acquired from a Simulink model of the transfer function given by 

equation (30), to which a unit step was applied at t = 1s. Twelve seconds of data was 

collected with a sampling time of 0.01s. The results of the three identification methods are 

shown in Table 1. 
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Table 1 

Third order system, step response: FOPDT parameters 

Identification method K T L 

IE method 2.046 2.124 1.563 

Curve Fitting Toolbox 2.057 2.226 1.557 

EzyFit Toolbox 2.074 2.283 1.543 

 

The response of the system compared to that FOPDT models identified using the IE and the 

EzyFit Toolbox is shown in Fig. 10. For clarity the model identified by the Curve Fitting 

Toolbox has been omitted. 

 
Fig. 10. Unit Step responses: Solid = Input/3rd Order response; Dotted = IE model; Dashed = 

EzyFit Toolbox model 

 

Pulse response. In the second example the step function was replaced by a single pulse of 

width 4 seconds and height 1 unit. The model derived using the IE method was compared 

with that obtained from the Curve Fitting Toolbox. The results are shown in Table 2. 

 

Table 2 

Third order system, pulse response: FOPDT parameters 

Identification method K T L 

IE method 2.046 2.124 1.563 

Curve Fitting Toolbox 2.040 2.189 1.616 

 

The response of the system plus the two models is shown in Fig. 11. 
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Fig. 11. Pulse responses: Solid = Input/3rd Order response; Dotted = IE model; Dashed = 

Curve Fitting Toolbox model 

 

4.2 Coupled Tanks apparatus 

 

The Coupled Tanks apparatus consists of two separate vertical tanks, as shown in Fig. 12. 

The tanks are connected by pipe containing a rotary valve, which allows the user to vary the 

flow characteristic between them. Each tank also has a drain pipe at its base, with a rotary 

valve that allows direct variable discharge into a reservoir. Liquid level is measured using a 

pressure sensing transducer, which is part of a simple bridge circuit providing a 0 to +10V 

signal. This corresponds to the 0 to 250mm scale mounted on the front panel adjacent to each 

tank window. The unit has two pumps, each driven by a 0 to +10V signal, which is the input 

to a small variable speed DC motor. An output voltage in the range 0 to +10V is available 

that is proportional to the pump flow rate. The aim of the identification experiment was to 

obtain a FOPDT transfer function relating the signal applied to the pump in tank 1 to the 

signal corresponding to the liquid level in tank 2. 
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Fig. 12. Coupled Tanks apparatus 

 

The first step was to collect the raw data for a step input. Using a sample time of 1s, 3400 

data samples were collected. The results are shown in Fig. 13. 

 
Fig. 13 Raw data collected from two-tank system 

 

It is apparent from Fig. 13 that the process output was significantly contaminated by 

noise. It is also clear that the data needed to be cropped, in order to remove the transient 

behaviour prior to the step input and thereby enable the step response identification 

methods to be used effectively. The cropped data is shown in Fig. 14. 
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Fig. 14. Cropped data used by identification software 

 

The parameters identified by the IE method, the Curve Fitting Toolbox, and the EzyFit 

Toolbox are shown in Table 3. A visual representation of the ‘closeness of fit’ using the 

parameters derived by the IE method and the EzyFit Toolbox is shown in Fig. 15.  

 

Table 3 

Two Tanks system, step response: FOPDT parameters 

Identification method K T L 

IE method 4.60 257.2 106.5 

Curve Fitting Toolbox 4.70 298.0 84.95 

Ezyfit Toolbox 4.55 213.2 103.9 
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Fig. 15. Step responses: Solid = Two Tanks Input/Order response; Dotted = IE model; 

Dashed = EzyFit Toolbox model 

 

 

5. Discussion and Conclusions 

 

Several curve fitting software methods have been described, which enable the parameters 

of a FOPDT model to be determined when the system input is either a step function or a 

simple pulse. Their application has been demonstrated with examples where the identification 

data was derived either by simulation, or acquired from an experimental process. The 

effectiveness of the different methods has been demonstrated and the relative advantages and 

disadvantages of each discussed. 

All of the methods worked well with simulated FOPDT data, where perfect (or almost 

perfect) results were obtained under controlled, noise-free conditions. They also appeared to 

work well both with the simulated third order system, and with the experimental data. In the 

case of the simulated FOPDT data this was easy to assess, simply by comparing the derived 

FOPDT parameters with the simulation values. In the latter two cases, however, performance 

assessment was largely qualitative in nature and achieved by superimposing step and pulse 

responses from the derived FOPDT models onto the original simulated higher order 

responses or experimental data.  

A more quantifiable measure of performance with real system data can be achieved in an 

indirect way and this is the subject of continued study. This involves designing a range of 

PID-type controllers using the identified FOPDT parameters and measuring their closed loop 

performance. A more rigorous study to quantify the effects of varying noise, sampling times, 

data collection times, and other factors that affect the performance of these and other 

identification methods is also underway. A longer term goal is to develop a systematic and 

semi-automated approach to system identification, both for FOPDT and higher order models. 

This will include guidelines for pre- and post-processing of acquired data, with a view to 

optimising performance. 

The results presented here, however, demonstrate the potential value of free or low cost, 

user-friendly, time domain-based identification methods that require only limited specialist 

knowledge to implement and employ. 
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