
1 of 22

Curve fitting software for first order plus dead time

(FOPDT) model parameter estimation using step or pulse

response data: a tutorial

Kevin Burna*, Chris Coxa

a Department of Computing, Engineering and Technology, University of Sunderland, SR6

0DD, United Kingdom.

*Corresponding author.

Email: kevin.burn@sunderland.ac.uk, Tel: +44 191 515 2778

Abstract
First order plus dead time (FOPDT) models are used to represent the behaviour of many

processes in the physical world. This is because the response of such models to step or pulse

inputs can offer a good approximation to the actual response of many systems and sub-

systems found in industrial process control. In such cases the system identification problem is

simplified to that of parameter estimation. However, although the theoretical development of

many system identification algorithms is available in the literature, researchers rarely release

developed code for third-party use. This paper describes a modern FOPDT system

identification algorithm based upon an integral equation (IE) method and demonstrates how it

can be implemented within any appropriate programming environment. It also describes how

existing curve fitting software developed for the numerical computing environment

MATLAB can be used to estimate the FOPDT parameters and step-by-step tutorials for using

three different methods are presented. The different techniques are compared subjectively

and tested using simulated data. Finally they are used to identify a laboratory process using

experimentally obtained data.

Keywords
System identification; parameter estimation; step and pulse response; curve fitting;

MATLAB; Curve Fitting Toolbox; Optimization Toolbox; EzyFit Toolbox.

1. Introduction

For the design of many control algorithms, a process model is required. When the control

algorithm is of the proportional plus integral (PI) or the proportional plus integral plus

derivative (PID) form, the process model is often assumed to have a first order plus dead time

(FOPDT) structure. This is because a FOPDT response is a good approximation to the actual

response of many systems and sub-systems found in industrial process control applications.

In addition, tuning of the PID controller parameters can be initiated using formulae that

specify their values in terms of the FOPDT parameters. Popular tuning methods include those

attributed to Ziegler-Nichols [1], Cohen-Coon [2] and Kappa-Tau [3]. This paper

concentrates on the estimation of FOPDT model parameters using step and pulse response

data.

mailto:kevin.burn@sunderland.ac.uk

2 of 22

 Early approaches to system identification relied on graphical techniques and the methods

of Ziegler and Nichols [1], Oldenbourg and Satorious [4], Sten [5] and Rake [6] epitomize

these methods. For monotonic step responses, the collection of approaches that are based on

specific area calculations are well represented in the paper of Nishikawa et al. [7] and the

book by Astrom and Hagglund [8].

More recently, a family of new methods has been published that is more computationally

involved but allows the parameters of the transfer function model, including the time delay,

to be estimated simultaneously. They are commonly referred to as integral equation (IE)

methods. The original ideas of Bi et al. [9] and Wang and Zhang [10] have been extended to

allow identification under transient initial conditions [11]. Other developments have also

been reported. For example, in references [12] and [13], new methods to handle ‘piecewise

step tests’ have been presented.

In all of the above cases special purpose software has been developed that is generally not

freely available. However, an alternative approach, using more readily available, general

purpose, proprietary curve fitting software, has the potential to provide a simpler solution to

the determination of FOPDT model parameters for those who do not have access to the kind

of specialist software described in the research literature.

For a number of years there has been an interest in the relationship between system

identification and curve fitting [14]. The aim of this paper is to illustrate how system

identification can be performed as a curve fitting exercise. After consideration of a recent IE

system identification method [11], three curve fitting software solutions available for the

MATLAB software environment are employed to estimate the parameters of a FOPDT model

using data generated under simulation. Detailed instructions on how to employ the various

methods are given and an assessment of their accuracy and ease-of-use is made. The IE

method and the best of the curve fitting methods are then employed on experimental data

acquired in the laboratory and a further comparison made.

The paper is structured as follows. In Section 2 the theory behind the IE method is

presented, for both step and pulse input data. Detailed pseudocode showing how to

implement the method for a step input using any suitable software platform is also shown.

Section 3 introduces three curve fitting techniques available in MATLAB, which are

presented in a tutorial style to help readers repeat the tests with appropriate data. It concludes

with a brief evaluation of the advantages and disadvantages of the different methods. In

Section 4, the IE method and one of the curve fitting methods are used to fit a FOPDT model

to (i) a simulated higher order system, and (ii) experimental data obtained from a laboratory

water level control system. Conclusions and recommendations for further work are discussed

in Section 5.

2. FOPDT parameter estimation using the integral equation (IE) method

2.1 Using step response data

The model of the system under consideration is assumed to be represented by the transfer

function:

 ()
()

1

exp

+

−
=

Ts

sDK
sGp (1)

In equation (1), K is the process gain, T is the time constant, and D is the dead time, or

time delay, as it will be referred to henceforth. Now consider the process response y(t) to a

3 of 22

step input u(t) from 0 to h, at some time t > 0. If the system is initially at rest the response

will be of the form shown in Fig. 1.

Fig. 1. Step response of a first order plus dead-time (FOPDT) model

Assuming the initial conditions to be zero, the basic equation can be re-written in a form

more amenable to the analysis under discussion.

 () () () () ()sEsDsKUsYsTsY +−=+ exp (2)

In equation (2), E(s) represents any error present due to noise, nonlinearity, or that arising

from any other inaccuracies in the model.

Equation (2) has three unknowns: T, K and D. A paper by Ahmed et al. [11] states that an

equation allowing simultaneous estimation of the unknowns can be obtained firstly

integrating equation (2). The result of this single integration is shown in equation (3):

()

()
()

() ()sEsD
s

sU
KsTY

s

sY
I+−+−= exp (3)

Taking inverse Laplace transforms of equation (3) yields:

  () ()  () ()teDtKutTyty I+−+−= 11 (4)

where the first order integrals of y(t) and u(t) are defined as follows:

  () ()=
t

dyty
0

1  ,  () ()=
t

dutu
0

1  (5)

Equation (4) is valid for any bounded input signal u(t). Notice that D remains an implicit

parameter that cannot be directly estimated. When the input is a step function, the problem is

overcome as follows.

It has been shown in [11] that if the input is a step function of height ℎ applied at 𝑡 = 0, the

following integral holds for t ≥ D:

 ()
()

!i

Dth
Dtu

i

i −
=− (6)

4 of 22

For a step input the estimation equation (4) can be written for t ≥ D:

  () () () ()teDtKhtTyty I+−+−=1 (7)

This can be expanded and re-arranged to give:

  () () ()teKhDKhttTyty I+−+−=1 (8)

Equation (8) can be expressed in least-squares estimation form as follows:

  () ()  ()te

KhD

Kh

T

ttyty I+

















−

−= 11 (9)

Using a more general terminology, equation (9) can be written in the form

 () ()tet +=  (10)

where  ()ty 1= , () 1tty−= ,

















−

=

KhD

Kh

T

 , and e(t) is noise.

Using all of the sampled values of  ()ty 1 , y(t) and t, equation (10) can be written as follows:

  += (11)

where

()
()
()

() 





























+

+

+

=

N

d

d

d

t

t

t

t

1

3

2

1

3

2

1









,

()
()
()

() 





























+

+

+

=

N

d

d

d

t

t

t

t

1

3

2

1

3

2

1









 (12)

In equation (12), N is the total number of samples and d is the delay expressed in number of

sampling intervals, so that tdD = , where t is the sample time.

The least squares estimation ̂ of  in equation (12) is given by:

 () =
− TT 

1ˆ (13)

This enables K, T and D to be calculated from the three rows of ̂ i.e.  1̂=T ,   hK /2̂=

and   ()KhD /1̂−= .

5 of 22

For a noise-free FOPDT process modelled by a FOPDT transfer function, perfect values

(i.e. 0% error) are obtained for the parameters, provided DD ˆ . With data obtained from real

systems, however, noise usually has a detrimental effect, resulting in biased values for the

estimated parameter values. One method of minimizing the effects of noise is to use the

instrumental variable least-squares method [9, 15-17]. This is briefly summarised as follows.

Even though the measurement noise is assumed white, the integration operation performed on

y(t) results in a coloured error term, which culminates in the parameter values being biased.

To counteract this, the IV method uses a surrogate system with ‘guessed’ parameters, with

the same input as the real system, but which is not influenced by noise. How this is achieved

in practice is shown in the following section.

2.2 Algorithm implementation

Details of the algorithm to implement the IE method in software are presented below in

the form of pseudocode. This is shown in Algorithm 1, where the following points should be

noted:

• The pseudocode is intended to be language independent, so that it can be implemented

with any appropriate programming language/platform. For this work, the authors used

a MATLAB m-file.

• All quantities in bold are either vectors or matrices.

• The algorithm requires time, input, and output data from a step test as vector

parameters (t, u and y, respectively).

• The sampling time Ts is known and constant, and there are N samples in each of the t,

y and y vectors, e.g. u = u[1], u[2], u[3], ..., u[N] etc.

• The estimate for the time delay used in the iteration process is actually relative to time

t=0. Hence the actual time delay is D – (step time). This is given the symbol L in

Algorithm 1.

• The variable for the previous loop estimate of D, expressed as an integer multiple of

Ts (D_guess_z), is initially set high in order to ensure the algorithm enters the

iteration loop during the first pass (line 6).

Algorithm 1. INTEGRAL EQUATION METHOD(t, u, y)

1 h = u[N] – u[1] // Step size

2 Ts = t[2] – t[1] // Sample time

3 Tstep = max(u[i+1] – u[i]), i = 1,N // Time at which step input occurs

4 y1 = integral(y) // Numerical integration

5 D_guess = Ts // Initial guess for (L + Tstep) used in

// iteration loop

6 D_guess_z = 999 // Previous estimate for D_guess

7 D_count = ceiling(D_guess / Ts) // D_guess expressed in terms of number

// of samples

8 count = 1 // Loop counter

9 while sTzDguessDguess − _ //Convergence condition

10 tm = t[(dd+1)...Nt] // Redefine t, y, y1 data so that it starts

11 ym = y[(dd+1)...Nt] // at sample (dd+1)

6 of 22

12 y1m = y1[(dd+1)...Nt]

13 phi = [-ym tm 1] // Least squares estimation

14 if count == 1 // First loop only...

15 psi = phi

16 else

17 () Nddyym 1ˆˆ += // Estimate, calculated below

18 psi = [mŷ tm 1]

19 end if

20  = (psi’*phi)-1 * psi’ * y1m // Equation (11)

21 T = [1] // Calculate T, K and L

22 K = [2] / h

23 D = -[3] / (K * h)

24 L = D – tstep

25 if L < 0 L = Ts // Prevents negative L causing instability

26 Gm = Ke-sL /(Ts + 1) // Surrogate system

27 ŷ =L-1[Gm(s).U(s)] // Inverse Laplace transform to get y

// estimate

28 Dguess_z = Dguess; // Update previous estimate

29 Dguess = round(D*100)/100; // Accurate to within one sample period

30 dd=ceil(Dguess/Ts); // Number of samples of Dguess

31 count = count + 1; // Update loop counter

32 end // Of while loop

The MATLAB m-file implementation of Algorithm 1 can be obtained from the authors if a

request is made by email.

2.3 Using pulse response data

Although a step function is accepted by many as an appropriate input for system

identification, there are situations where an input with a less disruptive response is desirable.

Such inputs include a simple pulse, characterised here as having an amplitude h

and width W. For analysis purposes a ‘pulse’ can be considered as a summation of delayed

steps and can be expressed as:

 () () ()
=

−−=
1

0i

iii LtLthtu (14)

where

 ()
()
()




−

−
=−

0for 1

0for 0

i

i

i
Lt

Lt
Lt (15)

In the case of the simple pulse, W = L1 – L0; h1 = -h0.

7 of 22

For the input defined by equation (14), the delayed signal can be expressed as:

 () () ()
=

−−−−=−
k

i

iii DLtDLthDtu
0

 (16)

If ()DLt ii −−= (17)

Then (16) can be simplified to:

 () ()
=

−−=−
k

i

iii DLthDtu
0

 (18)

It follows from (4) and (18) that:

 () () ()
=

+−−+−=
1

0

]1[

i

Iiii eDLthKtTyty (19)

Expanding (19):

 () () () 
= =

+−−+−=
1

0

1

0

]1[

i

I

i

iiiii ehKDLthKtTyty (20)

Finally, expressing the result of equation (20) into the form of equation (10) leads to:

  ()ty 1

1 = , () () 







−−= 

==

1

0

1

0

1

i

ii

i

iii hLthty ,

















−

=

KD

K

T

1 (21)

It is a relatively straightforward task to modify Algorithm 1 for a pulse input.

3. Curve fitting using MATLAB

3.1 Introduction

Norton [18] describes identification as the process of constructing a mathematical model

of a dynamical system from observations and prior knowledge. In a report produced by the

Open Sustainability Technology Lab of Michigan Tech, curve fitting is described as the

determination of a mathematical model that best fits experimental data [19]. In addition, their

best fit is quantitatively defined as the minimisation of the difference between the data and

the curve. Finally, in Ljung [14] formalised the ‘kinship’ between the identification of linear

dynamical systems and classical curve fitting.

The ‘best fit’ problem for experimental data frequently involves a least squares solution.

Often these problems are linear, but in the case of a FOPDT response it is nonlinear because

the curve to be used in the fitting process is not linear in the parameters. In such cases it is

necessary to resort to nonlinear least squares methods that involve an iterative improvement

to the parameter values. In principle this is similar to the iterative loop employed in the IE

8 of 22

method described in section 2. An excellent article by Gavin [20] provides a detailed analytic

treatise of one of the more popular strategies, known as Levenberg-Marquardt algorithm

(LMA). However, the approach here is not to describe the mathematical basis of these

various methods, but to explain how the various software solutions that are based on these

algorithms can be exploited.

In Ljung’s paper [14], the response of a linear dynamical system in continuous time is

described by:

 () () () ()tvtupGty += (22)

where p is the differentiation operator. In the general identification problem the aim is to find

transfer operator G(p) and possibly the spectrum of the additive noise v(t). However, in this

case the structure of the transfer function is known to have the form described by equation

(1). Consequently, the following can also be shown.

For a step function defined by:

 ()







=

0for 1

0for 0

t

t
tu (23)

The response is given by:

 () ()()   DtHTDtKhty −−−−= /exp1 (24)

where H[t - D] is the Heaviside step function. For a pulse of height h and width W:

 ()














=

Wt0

Wt0for

0t0

hty (25)

 () ()()    ()()   WDtHTWDtKhDtHTDtKhty −−−−−−−−−−−= /exp1/exp1

 (26)

It is thus equations (24) and (26) that will represent the theoretical ‘curves’ that are to be

fitted to the experimental data, with 𝐾, 𝑇 and 𝐷 the parameters to be identified.

The following sections describe the use of three proprietary software applications,

developed for use within a MATLAB environment: the Curve Fitting Toolbox, the

Optimization Toolbox, and a free curve-fitting toolbox called EzyFit. The information is

presented in an active and direct style, in order to facilitate its use as a tutorial for the new

user.

For each of the methods described it is assumed that step or pulse response data (as

appropriate) is available in the MATLAB workspace, in the form of time and output vectors

(usually assigned symbols t and y, respectively. The data used in the following sections was

generated using a Simulink simulation, via To Workspace blocks with the Save format set to

Array.

9 of 22

3.2 Curve Fitting Toolbox

The Curve Fitting Toolbox can be used in two different environments: via a graphical user

interface (GUI) (which is the one followed below), or via the MATLAB command line. This

section provides an overview of those parts of the toolbox which are required to identify a

FOPDT transfer function using noise-free data generated by a Simulink model. For those

wishing to have a more complete understanding of all of the features available when using

the toolbox, a good reference is that provided by the support documentation [21].

To illustrate the basic methodology consider the problem of determining the parameters of

a FOPDT model characterised by the transfer function:

 ()
()

12

15.2exp25.1

+

−
=

s

s
sGp (27)

To open the curve fitting tool, enter cftool at the prompt in the command window. This opens

the Curve Fitting Tool window shown in Fig. 2.

Fig. 2. The Curve Fitting Tool Window

The next step is to click on the [Data...] button in shown in Fig. 2, which opens the Data

window, similar to that shown in Fig. 3 but with the Preview pane initially empty. This

window allows X Data and Y Data to be imported from the workspace (i.e. t and y data for

this application). Once the data has been selected via the drop-down list, a preview of the

data that will be used for the identification phase appears, as shown. To proceed to the next

window, click on the [Create data set] button.

The original window (Fig. 2) now includes the preview data. The next step is to click on

the [Fitting...] button. This reveals the Fitting window, similar to that shown in Fig. 4, but

with the Custom Equations and Results panels initially empty. Clicking on the [New fit]

button allows the user to give the session a name (Fit name) and choose a Type of fit. Since

the Exponential library does not contain the desired equation, the user must create their own

using the Custom Equations alternative. This opens the New Custom Equation window

shown in Fig. 5.

10 of 22

Fig. 3. The Data window

11 of 22

Fig. 4. The Fitting window

Firstly, choose the General Equations tab, change the independent variable to t, then type in

the required equation. In MATLAB syntax the FOPDT response is defined as follows:

 ()()() ()DtheavisideTDtKhy −−−−= *./exp1* (28)

In equation (28), heaviside(t-D) is (unsurprisingly) the Heaviside function. This is

implemented in the MATLAB Symbolic Toolbox. However, if this toolbox is not installed, it

is a relatively simple matter for anyone with even rudimentary skills in writing MATLAB m-

files to develop a user-written equivalent.

Clicking on the [OK] button produces the response shown in Fig. 6. In addition, the

Results pane in the Fitting window displays the values for Kh, T and D, together with some

well- known characteristics that define the quality or goodness of fit (Fig. 4). In the case

shown here the date was ideal and noise-free and the model chosen is the right one. Thus, the

results were exact, as shown in Fig. 5, i.e. K = 1.25, D = 2.15, T = 2. In Fig. 5 the blue

diamonds represent the experimental data and the red curve is derived using the values

displayed for Kh, T and D.

Fig. 5. New custom equation window

12 of 22

Fig. 6. The final window

3.3 Optimization Toolbox

For MATLAB users who do not have access to the Curve Fitting Toolbox but do have access

to the Optimisation Toolbox [22], an alternative solution to the system identification problem

is possible to exploit the lsqcurvefit algorithm.

The lsqcurvefit function solves nonlinear least squares problems and is essentially a

convenient interface for data-fitting problems. It uses the lsqnonlin algorithm, which is the

same as that used by the Curve Fitting Toolbox. In the case of the FOPDT transfer function it

enables the user find values for K, T and L comprising the vector a which solve the problem:

 ()  −
2

,min YDataXDataaF (29)

given an input data vector XData and an observed data vector YData, both of length N. In

addition, F(a, XData) is a vector valued function that captures the step or pulse responses, as

presented earlier. Note that in this case, the input pulse must begin at a time greater than zero

i.e. t > 0, or the algorithm described below fails and an error message is generated. The

normal m-file formulation makes use of the anonymous function concept. An anonymous

function is one that is not stored in the program, but one that accepts an input and returns an

output, just as standard functions do. In addition, it contains a single executable statement. As

shown in the MATLAB m-file below, the @ operator creates the anonymous function.

For a single pulse input, of height H and width W, the FOPDT curve fitting m-file has the

following form (Algorithm 2):

Algorithm 2. PULSE INPUT IDENTIFICATION USING OPTIMIZATION TOOLBOX

function [a,resnorm]=optlsqFOPDTpulse(W,H,Working_Data);
 t=Working_Data(:,1);

y=Working_Data(:,2);
f=@(a,t)a(1)*H*(1-exp(-(t-a(3))/a(2)))...

13 of 22

.*heaviside(t-a(3))-a(1)*H*(1-exp(-(t-a(3)-W)/a(2)))...

.*heaviside(t-a(3)-W);
 [a,resnorm] = lsqcurvefit(f,[0.5 0.5 0.5],t,y)
 K=a(1); T=a(2); D=a(3);

end

For the transfer function given by equation (27), the results produced by Algorithm 2 for a

sample time 𝑇𝑆 = 0.1 were K = 1.2497, D = 2.1603, T = 1.999., with resnorm = 5.0072e-

007. Perfect results were obtained using the IE method with a pulse response.

3.4 EzyFit Toolbox

The EzyFit Toolbox is a free add-on for MATLAB, which was intended to offer a simple

and efficient way to perform curve fitting with a range of nonlinear fitting functions [23]. The

web site provides a wide range of details about the software including system requirements,

installation instructions and a demonstration example to illustrate the methodology and

provide further information about the software.

 After downloading and installing the toolbox, and adding the necessary input/output (t, y)

data in the workspace, the first step is to type at the MATLAB prompt:

>> efmenu

Assuming the MATLAB workspace includes (t, y) data, it should then be plotted using the

standard MATLAB command:

>> plot(t,y)

This results in the appearance of a standard MATLAB plot of the response. However an

additional option appears to the right hand side of the menu: EzyFit. Selecting this option

produces a window similar to Fig. 7. Clicking on Show fit reveals a list of different kinds of

functions. However none of the standard exponential functions are suitable for modelling a

FOPDT response. Consequently, it is necessary to click on Edit User Fit. This produces a

new list similar to that shown in Fig. 7. If the New User Fit... option is selected an Edit User

Fit window opens that allows the user to customise the fit, as shown in Fig. 8. The new list

shown in Fig. 8 (#1: myfit; #2: fit3 etc.) are all user-defined functions. In the following

discussion the function designed here was named csc1.

14 of 22

Fig. 7. EzyFit menu

Fig. 8. Edit User Fit window

After returning to the original plot window, selecting Show Fit and csc1 reveals the results

shown in Fig. 9. Note that T = 1/b = 2. Once again, almost perfect estimates for the FOPDT

parameters have been obtained.

15 of 22

Fig. 9. EzyFit results

3.5 Comparison of the different methods

For the step response tests, essentially perfect (i.e. error-free) results were obtained using

the IE method, the Curve Fitting Toolbox and the EzyFit Toolbox. For the pulse response

tests, perfect results were obtained using the IE method, but small errors were recorded when

using the Optimization Toolbox. However the greatest error, which was in the estimation of

the time delay D, was less than 0.5%.

Hence, when using idealised data, the performance of the various methods can hardly be

separated in a quantifiable sense. This is not surprising given that three of the methods – IE,

Curve Fitting Toolbox and EzyFit Toolbox – are all based upon a least squares approach. The

main differences between the methods lay in their relative ease of use and required prior

knowledge to apply them.

Due to the relative complexity of using the Optimization Toolbox compared to both the

Curve Fitting Toolbox and EzyFit, it was decided that it would not be used during further

testing, as described in the next section. The principal advantages and disadvantages of the

other approaches can be summarised as follows.

Integral equation (IE) method

Advantages:

• It can be developed as a standalone application, not tied to any computing platform

or programming language.

• The underlying equations can be developed for higher order systems, systems with

transfer function zeros, non-minimum phase systems, systems with transient initial

conditions, and different inputs (step, pulse, ramp etc.)

Disadvantages:

• Implementation requires advanced programming skills.

• Modification of the FOPDT equations requires an understanding of the underlying

theory and mathematics.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(x) = a (1 - exp(- b (x - c))). heavisi...

a = 1.25

b = 0.49998

c = 2.15

R = 1 (lin)

16 of 22

Curve Fitting Toolbox

Advantages:

• It is easy to learn.

• It can be run from a GUI-based user interface.

• A wealth of supporting information is freely available online.

Disadvantages:

• The Toolbox must be purchased and the correct version used within a MATLAB

environment.

• The FOPDT structure is not a default, user-selectable option.

EzyFit Toolbox

Advantages:

• It is free to download and install, and there is no time limit on its use.

• It is easy to use.

Disadvantages:

• It must be used within a MATLAB environment.

• The FOPDT structure is not a default, user-selectable option.

4. More realistic examples of FOPDT modelling

A large number of industrial processes with monotonic step responses can be modelled by

a FOPDT transfer function of the form defined by equation (1) [24]. In addition, there is

widespread use of the model in the design of PI and PID controllers. For example in the book

by O’Dwyer [25], tuning rules for PI/PID controllers proposed over six decades are

presented, many of which assume the availability of a FOPDT model.

This section considers two different situations that deviate from the ideal FOPDT data

considered until now. The first is where the transfer function of the system to be identified is

of order greater than one. The second concerns a laboratory process with an unknown transfer

function; however, even in its simplest mathematical representation, the characterising

equations are nonlinear. In addition, the measured response is contaminated by noise.

In both cases, the aim is to determine FOPDT models from step and pulse inputs, using the

IE method, the Curve Fitting Toolbox, and the EzyFit Toolbox, as appropriate.

4.1 Simulated higher order process

The chosen model was third order and defined by the following transfer function:

 ()
()

()31

5.0exp2

+

−
=

s

s
sGp (30)

Step response. Data was acquired from a Simulink model of the transfer function given by

equation (30), to which a unit step was applied at t = 1s. Twelve seconds of data was

collected with a sampling time of 0.01s. The results of the three identification methods are

shown in Table 1.

17 of 22

Table 1

Third order system, step response: FOPDT parameters

Identification method K T L

IE method 2.046 2.124 1.563

Curve Fitting Toolbox 2.057 2.226 1.557

EzyFit Toolbox 2.074 2.283 1.543

The response of the system compared to that FOPDT models identified using the IE and the

EzyFit Toolbox is shown in Fig. 10. For clarity the model identified by the Curve Fitting

Toolbox has been omitted.

Fig. 10. Unit Step responses: Solid = Input/3rd Order response; Dotted = IE model; Dashed =

EzyFit Toolbox model

Pulse response. In the second example the step function was replaced by a single pulse of

width 4 seconds and height 1 unit. The model derived using the IE method was compared

with that obtained from the Curve Fitting Toolbox. The results are shown in Table 2.

Table 2

Third order system, pulse response: FOPDT parameters

Identification method K T L

IE method 2.046 2.124 1.563

Curve Fitting Toolbox 2.040 2.189 1.616

The response of the system plus the two models is shown in Fig. 11.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Time (s)

In
p
u
t,

 O
u
tp

u
t

18 of 22

Fig. 11. Pulse responses: Solid = Input/3rd Order response; Dotted = IE model; Dashed =

Curve Fitting Toolbox model

4.2 Coupled Tanks apparatus

The Coupled Tanks apparatus consists of two separate vertical tanks, as shown in Fig. 12.

The tanks are connected by pipe containing a rotary valve, which allows the user to vary the

flow characteristic between them. Each tank also has a drain pipe at its base, with a rotary

valve that allows direct variable discharge into a reservoir. Liquid level is measured using a

pressure sensing transducer, which is part of a simple bridge circuit providing a 0 to +10V

signal. This corresponds to the 0 to 250mm scale mounted on the front panel adjacent to each

tank window. The unit has two pumps, each driven by a 0 to +10V signal, which is the input

to a small variable speed DC motor. An output voltage in the range 0 to +10V is available

that is proportional to the pump flow rate. The aim of the identification experiment was to

obtain a FOPDT transfer function relating the signal applied to the pump in tank 1 to the

signal corresponding to the liquid level in tank 2.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

In
p
u
t,

 O
u
tp

u
t

19 of 22

Fig. 12. Coupled Tanks apparatus

The first step was to collect the raw data for a step input. Using a sample time of 1s, 3400

data samples were collected. The results are shown in Fig. 13.

Fig. 13 Raw data collected from two-tank system

It is apparent from Fig. 13 that the process output was significantly contaminated by

noise. It is also clear that the data needed to be cropped, in order to remove the transient

behaviour prior to the step input and thereby enable the step response identification

methods to be used effectively. The cropped data is shown in Fig. 14.

500 1000 1500 2000 2500 3000
2

3

4

5

6

P
ro

c
e
s
s
 O

u
tp

u
t

0 500 1000 1500 2000 2500 3000 3500
3.2

3.4

3.6

3.8

4

4.2

P
ro

c
e
s
s
 I

n
p
u
t

Time

20 of 22

Fig. 14. Cropped data used by identification software

The parameters identified by the IE method, the Curve Fitting Toolbox, and the EzyFit

Toolbox are shown in Table 3. A visual representation of the ‘closeness of fit’ using the

parameters derived by the IE method and the EzyFit Toolbox is shown in Fig. 15.

Table 3

Two Tanks system, step response: FOPDT parameters

Identification method K T L

IE method 4.60 257.2 106.5

Curve Fitting Toolbox 4.70 298.0 84.95

Ezyfit Toolbox 4.55 213.2 103.9

0 200 400 600 800 1000 1200 1400 1600 1800
-4

-3

-2

-1

0

1

P
ro

c
e
s
s
 O

u
tp

u
t

0 200 400 600 800 1000 1200 1400 1600 1800
-0.8

-0.6

-0.4

-0.2

0

0.2

P
ro

c
e
s
s
 I

n
p
u
t

Time

21 of 22

Fig. 15. Step responses: Solid = Two Tanks Input/Order response; Dotted = IE model;

Dashed = EzyFit Toolbox model

5. Discussion and Conclusions

Several curve fitting software methods have been described, which enable the parameters

of a FOPDT model to be determined when the system input is either a step function or a

simple pulse. Their application has been demonstrated with examples where the identification

data was derived either by simulation, or acquired from an experimental process. The

effectiveness of the different methods has been demonstrated and the relative advantages and

disadvantages of each discussed.

All of the methods worked well with simulated FOPDT data, where perfect (or almost

perfect) results were obtained under controlled, noise-free conditions. They also appeared to

work well both with the simulated third order system, and with the experimental data. In the

case of the simulated FOPDT data this was easy to assess, simply by comparing the derived

FOPDT parameters with the simulation values. In the latter two cases, however, performance

assessment was largely qualitative in nature and achieved by superimposing step and pulse

responses from the derived FOPDT models onto the original simulated higher order

responses or experimental data.

A more quantifiable measure of performance with real system data can be achieved in an

indirect way and this is the subject of continued study. This involves designing a range of

PID-type controllers using the identified FOPDT parameters and measuring their closed loop

performance. A more rigorous study to quantify the effects of varying noise, sampling times,

data collection times, and other factors that affect the performance of these and other

identification methods is also underway. A longer term goal is to develop a systematic and

semi-automated approach to system identification, both for FOPDT and higher order models.

This will include guidelines for pre- and post-processing of acquired data, with a view to

optimising performance.

The results presented here, however, demonstrate the potential value of free or low cost,

user-friendly, time domain-based identification methods that require only limited specialist

knowledge to implement and employ.

0 200 400 600 800 1000 1200 1400 1600 1800
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time (s)

In
p
u
t,

 O
u
tp

u
t

22 of 22

6. References

[1] J.G. Ziegler, N.B. Nichols, Optimum settings for automatic controllers, Trans ASME, 65

(1942) 433-444
[2] G.H. Cohen, G.A. Coon, Theoretical considerations of retarded control, Trans ASME,75, 827-

834,1953

[3] W.S. Levine (Editor), The Control Handbook: 2nd Edition, CRC Press, 2011.

[4] R.C. Oldenbourg, H. Sartorius, The dynamics of automatic control, ASME, New York, 1948.

[5] J.W. Sten, Evaluating second-order parameters, Instrumentation Technology, 17 (1970) 39-41.

[6] H. Rake, Step response and frequency response methods, Automatica, 16 (1980) 519-526.

[7] Y. Nishikawa, N. Sannomiya, T. Ohata, H. Tanka, A method for auto-tuning of PID control

parameters, Automatica, 20 (1984) 321-332.

[8] K.J. Astrom, T. Hagglund, PID controllers: Theory, design and tuning, Instrument Society of

America, 1995.

[9] Q. Bi, W. Cai, E. Lee, Q.G. Wang, C.C. Hang, Y. X. Zhang, Robust identification of first-order

plus dead-time model from step response, Control Engineering Practice, 7(1) (1999) 71-77

[10] Q.G. Wang, Y. Zhang, Robust identification of continuous systems with dead-time from step
response, Automatica, 37(3) (2001) 377-390

[11] S. Ahmed, B. Huang, S.L. Shah, Identification from step responses with transient initial

conditions, Journal of Process Control, 18(2) (2008) 121-130

[12] M. Liu, Q.G. Wang, B. Huang, C.C. Hang, Improved identification of continuous-time delay

processes from piecewise step test, Journal of process Control, 17(1) (2007) 51-57

[13] S. Ahmed, Process identification using non-ideal steps, 9th Int. Symp. On Dynamics and

Control of Process Systems (DYCOPS, 2010), Leuven, Belgium, July 5-7, (2010)

[14] L. Ljung, Linear system identification as curve fitting, Linkoping University, Sweden, 12/2002

[15] P. C. Young, An instrumental variable method for real-time identification of a noisy process,
Automatica, 6/2 (1970), 271-287.

[16] K. Burn, L. Maerte, C.S. Cox, 2010. A MATLAB toolbox for teaching modern system

identification methods for industrial process control. International Journal of Mechanical

Engineering Education, 38 (4), pp. 352-264.

[17] S. Ahmed, B. Huang, S.L. Shah, Novel identification method from step response, Control

Engineering Practice, 15(5) (2007) 545-556.

[18] J.P. Norton, An introduction to identification, Dover Publications,2009

[19] Michigan Tech Open Sustainability Lab. Available

<http://www.appropedia.org/Curve_fitting_to_a_set_of_data>.

[20] H.P. Gavin, The Levenberg-Marquardt method for nonlinear squares curve fitting

problems. Available <http://people.duke.edu/~hpgavin/ce281/lm.pdf>.

[21] MATLAB Curve Fitting Toolbox: User’s Guide, Mathworks Inc., 2013.

[22] MATLAB Optimization Toolbox: User’s Guide. Mathworks Inc., 2009.

[23] Ezyfit : A free curve fitting toolbox for MATLAB. Available <http://www.fast.u-

psud.fr/ezyfit>.

[24] G. Fedele, A new method to estimate a first-order plus time-delay mode from step

response, J. Franklin Inst. 346 (2009) 1-9

[25] A. O’Dwyer, Handbook of PI and PID controller tuning rules, Imperial College Press,

London, 2006.

http://www.appropedia.org/Curve_fitting_to_a_set_of_data
http://people.duke.edu/~hpgavin/ce281/lm.pdf
http://www.fast.u-psud.fr/ezyfit
http://www.fast.u-psud.fr/ezyfit

